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Baire, or longest common prefix distance. Also an ultrametric.

An example of Baire distance for two numbers (x and y) using

a precision of 3:

X =0.425

i

v =0.427

Baire distance between xand v:

dz (x, y) = 107

Base () here is 10 (suitable for real
values)

Precision here = |K]| =3

That is:

k=1->Xk=y -> 4
k=2 -> Xk=Yyk -> 2
k=3 -> Xk+ Yk -> 5#7



Approx. 0.5 million SDSS release 5 (D’Abrusco
et al.) - regress z_spect on z_phot

Furthermore: determine good quality mappings
of z_spect onto z_phot, and less qood quality

mappings
l.e., cluster-wise nearest neighbour regression

Note: cluster-wise not spatially (RA, Dec) but
rather within the data itself



Perspective Plots of Digit Distributions
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 Onthe right we have z_spec where three data peaks can be observed.
On the left we have z_phot where only one data peak can be seen.



Outcome of Fast Clusterwise Regression - using
m-adic hierarchical clustering, i.e. Baire distance with base 10.

 82.8% of z_spec and z_phot have at
least 2 common prefix digits.

e |.e. numbers of observations sharing 6, 5, 4, 3, 2 decimal
digits.

 We can find very efficiently where

these 82.8% of the astronomical
objects are.

e 21.7% of z_spec and z_phot have at
least 3 common prefix digits.

* |.e. numbers of observations sharing 6, 5, 4, 3 decimal digits.



Note on terminology, m-adic (or m-ary),
p-adic number systems

Notationally m >= 2 is a positive integer, and p is prime.

(m-adic when m = 10 is decimal. p-Adic when p = 2 is binary,
when p = 3 is ternary.)

An m-adic number system is a ring, while a p-adic number
system constitutes a field. A field has a multiplicative inverse
for non-zero values, i.e. it permits division.

By convention, p-adic for p = « isreal. Forreals, e.g. 0.5is
identical to 0.49999....

In an m-adic representation, for m = 10, we distinguish 0.50
from 0.49, and even 0.5 from 0.49999...

Consider the tree representation of an m-adic number. E.g. for
m = 10, this is a regular 10-way tree.

Rather than real number valued proximity, i.e. similarity of tree
terminal nodes, our focus will be on the matching of branches,
from the root, of the tree representation.



Introductory motivation

Use heterogeneity and diversity in data. An a priori
and global model may not be appropriate.

Concerned with matching, and drawing inferences
(extrapolation and interpolation, prediction,
distributional degree of association, etc.) from
structures that are discrete.

In addition to being discrete, there are associations,
similarities and identities that are relevant.

Also relevant are incorporation, inclusion, properties of
an object being a subset of properties of one or more

other objects.



A representation for such structures is an
ultrametric or tree topology.

Objects are taken as nodes of a tree. A tree is
a synonym for hierarchy.

These objects, or entities, could, if desired,
include sub-objects and sub-entities also.

In set notation, a hierarchy is a partially
ordered set, or poset



Short review of other work, 1/3: Determining Photometric Redshifts

from Colour and Magnitude Observed Data, and Evaluating relative

to Spectroscopic Redshifts

In Vanzella et al., “Photometric redshifts with the multilayer
perceptron neural network: application to the HDF-S and SDSS”,
A&A 423, 761-776, 2004, there is predicting of photometric
redshifts “from an ultra deep multicolor catalog'. Training is
carried out with spectroscopic redshifts. This is noted: “the
difficulty in obtaining spectroscopic redshifts of faint objects”,
and then: “A crucial test in all cases is the comparison between
the photometric and spectroscopic redshifts which is typically
limited to a subsample of relatively bright objects".

Csabai et al., “Photometric redshifts for the SDSS Early Data
Release”, AJ 125, 580-592, 2003.

Firth et al., “Estimating photometric redshifts with artificial neural
networks”, MNRAS 339, 1195-1202, 2003.



Short review 2/3: Interval Measurements for Bayesian “stacking”
Modelling; Accuracy and Correctness of Measurement

In Shu et al., “Evolution of the velocity-dispersion functino of luminous red galaxies: a
hierarchical Bayesian measurement”, AJ 124, 90-100, 2012, velocity distributions are
at issue, for association with galaxy sizes, to “determine 'dynamical masses' that are
independent of stellar-population assumptions”, with that to be used for evolution of
galaxies for given mass, following relationship estimation with mass and gravitational
potential. Interest is in elliptical galaxies, that are “To a first approximation ...
'‘pressure-supported’ rather than rotationally supported”. Velocity dispersion is to be
based on spectroscopic data.

Now, in particular for faint, even if luminous, galaxies, there will be uncertainty and non-Gaussianity in
measurement. Eigenspectra are determined from principal components analysis. Because of the imprecision
of measurement the following is carried out, in the estimation of velocity dispersion.

Both in redshift and in absolute magnitude, respectively with intervals of 0.04 and 0.1, galaxies
are binned. Therefore, for error or imprecision of measurement, binning, i.e. interval
measurements, are a way to somewhat robustify the data. Based on extensive analyses, it is
concluded that here the “stacking” of multiple spectra is replaced by a new “Bayesian stacking”
approach. (A hierarchical Bayesian approach.)

Bolton et al., “Sfectral classification and redshift measurement for the SDSS-III Baryon Oscillation Spectroscopic
Survey”, AJ 144, 144-164, 2012.

Under “Known issues", there are the following: the use of probability priors on principal component analysis coefficient
combinations; spectra that are obscured by others, e.g. quasar spectra, by AGN spectra; spectra affected by “cross-
talk from bright stars"; superpositioning of observed objects; and a few class of object, and detector suitability (“fibers
near the edge of the spectrograph camera fields of view")



Short review 3/3: Nonlinear regression

R. d’Abrusco, G. Longo et al, “The use of neural networks to probe the
structure of the nearby universe”, Prof. ADA-4, 2006, arXiv Jan. 2007: MLPs
are used to relate photometric redshifts to spectral information. Varying
object classes (normal galaxies, stars, late type stars, nearby AGNSs, distant
AGNSs) are subject to PCA of spectra, to provide an eigenvector-based
spectral classification index.

The case is then made for carrying out the nonlinear regression, using MLP,
on two different redshift intervals, z < 0.25 and z > 0.25. Differing galaxy
populations are associated with these redshift intervals.

R. d’Abrusco et al., “Mining the SDSS archive. |. Photometric redshifts in the
nearby universe”, AJ 663, 752-764, 2007.

“photometric redshift estimates depend on the morphological type, age,
metallicity, dust, etc. it has to be expected that if some morphological parameters
are taken into account besides than magnitudes or colors alone, estimates of
photometric redshifts should become more accurate.” In this work, the “near
universe', z< 0.5, is at issue, and also with discussion of “the near and
intermediate redshift universe”, z < 1.

“the derivation of photometric redshifts requires, besides an accurate evaluation
of the errors, also the identification of a homogeneous sample of objects.”



Data and Objectives Pursued Here

* SDSS Data Release 5, relating to the following:
“Stripe 82 is an equatorial region repeatedly
imaged during 2005, 2006, and 2007".

* Number of objects: 443094; right ascension,
declination, spectroscopic redshift, photometric
redshift. Then minimum redshifts, respectively
spectroscopic and photometric, are:
0.000100049, 0.0001035912, and the maximum
redshifts are: 0.599886, 0.5961629.



Assess spectroscopic redshift from photometric redshift:
Take discreteness of measurement into account.

Take distinction of value to be primarily associated with the
discrete sourcing of our measurements, rather than being solely a
statistical uncertainty or error component of our measurement.

However statistical uncertainty or error component of
measurement are taken as integral to the discreteness of sourced
data.

It arises from this reasoning that what is important in practice is to
be able to codify one's data, in the sense both of data encoding and
of data representation, here related to number theory.

From the data encoding and representation, we are seeking to
associate data interpretation and understanding, with the discrete
sourcing of our measured data.

Preliminary exploratory phase of analysis follows.



Full precisions, 7 or 8 digits. While mainly peaked around lower
redshifts, there are some potentially interesting smaller peaks.

Precision: full (7, 8)
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Histograms of (upper) spectroscopic,
(lower) photometric redshift values.
Upper left: 1 digit precision.

Upper right: 2 digits precision

Lower left: 3 digits precision



We are considering the histograms as a
preliminary exploratory phase of the analysis

« Overall, the first digit of precision of the spectroscopic and
photometric redshifts is common to 366907 objects, that
IS, 83% of all cases. Can this be furthered?

* |f we look at both the shared first digit of precision, and
additionally a difference in the first digit of precision of at most
1, then we find that 99.6% of all the spectroscopic and
photometric redshift measurement are that close in
measurement value.

* While this is motivational, it requires further study of just what
redshifts differ by 1 in the first digit of precision. However, we
do not consider such a finding as generally and broadly
applicable.



Re-Representing Our Data in p-Adic and
Other Number Systems

With reference to the histograms displayed in 3-dimensional
Euclldean space, in regression-oriented matching, we could
“calibrate” the regression with RA and Dec.

F. Murtagh, A.E. Raftery and J.L. Starck, “Bayesian inference
for multiband image segmentation via model-based cluster
trees", Image and Vision Computing, 23, 587-596, 2005.

Now, compared to a Euclidean and Hilbert space, we are dealing with
discrete object locations, and clustered albeit delimited regions of objects.
A graph and more particularly, a tree is an appropriate representation,
rather than a continuous space.

Because of the directly mapped, rooted tree representation that can be
associated with any m-adic number representation, we proceed as
follows: consider our given decimal or base 10 measurements, as m-adic
with m = 10. Efficiently derive other m-adic number representations, to
assess them.



Re-Representing Data in Other Number Systemes,
through Efficient Approximation

» Closest fit approximation of m-adically
represented data by m-1 — adically
represented data; repeat for m-2, ...

« Computationally this is linear in the number of
observations multiplied by the number of
digits of precision.

* F. Murtagh, "Sparse p-adic data coding for
computationally efficient and effective big
data analytics”, p-Adic Numbers, Ultrametric
981al6ysis and Applications, 8 (3), 236--2409,



Spectroscopic redshifts. Initial m-adic display,
for m = 10. Three digits of precision used.
(Repeated in the next slide.)
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Figure 5: Spectroscopic redshifts. Initial m-adic display, for m = 10. Three
digits of precision used.
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Figure 6: Spectroscopic redshifts. m-Adic display, for m = 9.
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Figure 7: Spectroscopic redshifts. m-Adic display, for m = 8.
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Figure 8: Spectroscopic redshifts. p-Adic display, for p = 7.
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Figure 9: Spectroscopic redshifts. m-Adic display, for m = 6.

Figure 10: Spectroscopic redshifts. p-Adic display, for p = 5.
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Figure 11: Spectroscopic redshifts. m-Adic display, for m = 4.
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Figure 12: Spectroscopic redshifts. p-Adic display, or ternary, for p = 3.
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Figure 13: Spectroscopic redshifts. p-Adic display, or binary, for p = 2.
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Figure 14: Spectroscopic redshifts. Squared distance, 1.e. error, original 10-adic
representation, and the sequence of m-adic best fits.
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Figure 15: Photometric redshifts. Initial m-adic display, for m = 10. Three
digits of precision used.
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Figure 16: Photometric redshifts. m-Adic display, for m = 9.
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Figure 17: Photometric redshifts. m-Adic display, for m = 8.

Figure 18: Photometric redshifts. p-Adic display, for p = 7.
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Figure 19: Photometric redshifts. m-Adic display, for m = 6.
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Figure 20: Photometric redshifts. p-Adic display, for p = 5.
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Figure 21: Photometric redshifts. m-Adic display, for m = 4.
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Figure 22: Photometric redshifts. p-Adic display, or ternary, for p = 3.
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Figure 23: Photometric redshifts. p-Adic display, or binary, for p = 2.
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Figure 24: Photometric redshifts. Squared distance, 1.e. error, original 10-adic
representation, and the sequence of m-adic best fits.



Totalled distances between spectroscopic and
photometric redshifts

Representation Distance

Original, m-adic 3497.347
m-adic, m = 9 3219.545
m-adic, m = 8 2960.628
p-adic, p =7 2463.237
m-adic, m = 6 2102.937
p-adic, p = 5 1798.283
m-adic, m = 4 1401.31
p-adic, p = 3 1009.443
p-adic, p = 2 940.8114

Table 1: Totalled distance between



In Table 1, the binary representation of the spectroscopic and
photometric redshifts gives the best, closest correspondence.

In Table 2, to follow, up to 57% of the digits in the ternary, 3-adic,
representations of the spectroscopic and photometric redshifts are
identical. Next, improve this.

Table 3: the first digit of the representation of the redshift values is
used. For either p-adic with p =5, or m-adic with m =4, we have
98% identity between spectroscopic and photometric redshifts.

Thus: desirability of either 4-adic or 5-adic redshift encoding. l.e.
values using digit sets 0,1,2,3 or 0,1,2,3,4.

In all number theory representations, there is a natural, implicit
hierarchical data represenation.

For p-adic with p =2, p =3, i.e. binary, ternary representations,
spectroscopic and photometric redshift identity is just over 89%.



Identical digits between spectroscopic and photometric redshifts, the
total number, and as the fraction of all digits in these 443094 objects

Representation No. identical digits Fraction
Original, m-adic 508376  0.3824441
m-adic, m = 9 361332 0.2718249
m-adic, m = & 404957 0.3046434
p-adic, p =7 446470 0.3358731
m-adic, m = 6 487841  0.3669959
p-adic, p = 5 712084  0.5356907
m-adic, m = 4 745784  0.5610427
p-adic, p = 3 757357 0.5697489
p-adic, p = 2 736578 0.5541172

Table 2: Identical digits between spectroscopic and pl
total number, and as the fraction of all digits in these



Compared to previous table, here just the first digit of precision is used.
Identical digits between spectroscopic and photometric redshifts, the total
number, and as the fraction of all digits in these 443094 objects

Representation No. 1dentical digits Fraction
Original, m-adic 366907  0.8280568
m-adic, m = 9 213872 0.4826786
m-adic, m = 8 247360 0.5582563
p-adic, p =7 262474  0.5923664
m-adic, m = 6 262474  0.5923664
p-adic, p = 5 434736  0.9811372
m-adic, m = 4 434736  0.9811372
p-adic, p = 3 395490 0.8925646
p-adic, p = 2 395490 0.8925646

Table 3: Compared to Table 2, here just the first digit of
tical digits between spectroscopic and photometric redsl
and as the fraction of all digits in these 443094 objects.



Conclusions

Acknowledged that the training set used here only.

This is a clusterwise regression, generalizing nearest
neighbour regression.

Precision of measurement is fundamental. Our focus has
been on clustering, or binning, or interval specification.

Longer term, our objective includes inferring structure from
data. Such structure includes relative distance from the
observer, and associated with this, inter- and intra-
distances for clustered objects. Central to this is topology
(spatial, shaped, ordered data) rather than geometry.
Another longer term goal is the explicit incorporation of the
time dimension.
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