Data Mining & Exploration

We make science discovery happen

  • Home
  • Software Services
  • Science Cases
  • Publications
  • Education & Lectures
  • Who's who

Contents

Clustering - case Train

Clustering - case Test

Clustering - case Run

Contact Us

Clustering SOM help page

webapp logo

This is the page dedicated to help users of data mining web application (the beta release currently available here), in case of selection of SOM (Clustering with SOM) Model to make experiments. This page is also directly reachable from the web application, in case users select the help button. The following contents are mainly dedicated to assist the user during the model parameter selection and setup, by giving details about each parameter, its role in the model, default value and suggestions about the right choice.

There are 3 sub-sections, related with the use cases that users can select to perform experiments, respectively Train, Test and Run.

Functionality: Clustering with SOM model

Parameter specifications

Use Case: TRAIN

  • Input file
  • this parameter is a required field!

    Input dataset file.

  • Dataset Type
  • this parameter is a required field!

    Integer indicating the type of input data format

    Accepted entries are:

    • 0: used for .txt and .dat types
    • 1: used for .csv, .votable. and .fits (fits-table) types
    • 2: used for .jpg, .jpeg, .png and .gif types
    • 3: used for .fits (fits-image) type

  • Configuration file
  • To be used only in case of resume training (from a previous training session)

  • Input nodes
  • this parameter is a required field!

    Number of neurons (first layer), (always integer greater than 0).

    T number of neurons of this layer corresponds to input features of the dataset

  • Output rows
  • this parameter is a required field!

    Number of rows of output layer (Kohonen layer), always greater than 1.

  • Output columns
  • this parameter is a required field!

    Number of columns of output layer (Kohonen layer), always greater than 1.

  • Output dimension
  • type of output layer dimension

    • 0: 2D grid
    • 1: 3D grid

    If left empty, its default is 0 (2D)

  • Normalize data
  • Choice to force the normalization of input data in [-1, +1]

    • 0: no normalized
    • 1: yes normalized

    If left empty, its default is 0 (i.e. no normalized data)

  • Initial learning rate
  • Initial learning rate, Real number in ]0, 1[

    If left empty, its default is 0.7

  • Neighbor size
  • Initial neighbor size within the neurons of output grid. Integer not less than 0.

    If left empty, its default is 3

  • Epochs
  • Number of training epochs. Integer number greater than 0.

    If left empty, its default is 200

  • Final learning rate
  • final learning rate, Real number in ]0, initial learning rate[

    If left empty, its default is 0.005

(See the user manual for more details)

back to top page

Functionality: Clustering with SOM model

Parameter specifications

Use Case: TEST

  • Input file
  • this parameter is a required field!

    Input dataset file.

  • Dataset Type
  • this parameter is a required field!

    Integer indicating the type of input data format

    Accepted entries are:

    • 0: used for .txt and .dat types
    • 1: used for .csv, .votable. and .fits (fits-table) types
    • 2: used for .jpg, .jpeg, .png and .gif types
    • 3: used for .fits (fits-image) type

  • Dataset Target file
  • this parameter is a required field!

    target label file realted to the input dataset

  • Configuration file
  • this parameter is a required field!

    Internal parameter setup after a training session

(See the user manual for more details)

back to top page

Functionality: Clustering with SOM model

Parameter specifications

Use Case: RUN

  • Input file
  • this parameter is a required field!

    Input dataset file.

  • Dataset Type
  • this parameter is a required field!

    Integer indicating the type of input data format

    Accepted entries are:

    • 0: used for .txt and .dat types
    • 1: used for .csv, .votable. and .fits (fits-table) types
    • 2: used for .jpg, .jpeg, .png and .gif types
    • 3: used for .fits (fits-image) type

  • Configuration file
  • this parameter is a required field!

    Internal parameter setup after a training session

(See the user manual for more details)

back to top page

Copyright © 2010 DAME Collaboration. All right reserved.