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Abstract—In the era of massive astronomi-
cal datasets, efficient identification of candidate
quasars and the reconstruction of their three di-
mensional distribution in the Universe is a key
requirement for constraining some of the main
issues regarding the formation and evolution of
QSOs. A method for the determination of pho-
tometric redshifts of QSOs based on multiwave-
length photometry and on a combination of data
mining techniques will be discussed. This proce-
dure, specifically suited for accompanying the can-
didate selection method discussed in (D’Abrusco
et al. 2008), makes use of specific tools developed
under the EuroVO and NVO frameworks for data
gathering, pre-processing and mining, while rely-
ing on the scaling capabilities of the computing
grid. This method allowed us to obtain photometric
redshifts with an increased accuracy (up to 30%)
with respect to the literature.

Index Terms—QSO, AGN, neural networks,
photometric redshifts.

I. INTRODUCTION

HE accurate knowledge of the shape and

redshift evolution of the quasar luminosity
function (QLF) is fundamental to many fields of
modern cosmology [1]. For instance, the faint-
end slope of the QLF, which is found to decrease
with redshift (e.g. [2], [3], [4]), is important
in determining the early formation history of
Black Holes (BHs) and their contribution to
reionization, as well as the possible connections
between quasars and, e.g., the low-luminosity

Seyfert galaxies seen at z ~ 0. In traditional
models, this trend requires a significant and rapid
evolution in the shape of the distribution of the
masses of the host galaxies, which cannot be
accounted for in either semianalytical models or
numerical simulations and is not consistent with
a wide range of galaxy observations (e.g., [S]).
These models, in fact, generally succeed at high
redshift but do not explain the decrease in counts
of bright quasars at low redshift (e.g., [6]), unless
other ad hoc mechanisms are invoked such as,
for instance, the suppression of the growth of
high-mass spheroids (e.g., [7]), or the evolution
in the BH accretion efficiency with redshift (e.g.,
[8]). In other words, these models cannot be
extrapolated to low luminosities or to redshifts
where the slope is undetermined. Observations
at high redshifts are uncertain, and will remain
so until large, uniformly selected samples will
allow to measure the faint-end slope at both low
(z < 1) and high (z > 3) redshifts. The con-
struction of such samples is troublesome due to
the necessity of obtaining spectra for large sam-
ples of mainly faint objects: this task which is
both very demanding in terms of observing time
and challenging in terms of signal to noise ratio.
In recent years, however, the availability of deep,
accurate and multiband digital surveys such as
the Sloan Digital Sky Survey (SDSS, [15]), the
Two Degree Fields (2dF), or the UKIDSS ([16])
has opened a new possibility: the search for
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quasars in the photometric parameter space and
the evaluation of their distances using photo-
metric redshifts. This approach uses photometry
to determine the redshift of the observed object
relying upon the fact that the spectrum of radi-
ation emitted by the sources possess very strong
features that are detected in different filters of the
photometric system. The photometric redshift of
a source can then be calculated by establishing
an empirical relation between the brightness in
different filters and the actual redshift of the
source, and finally applying such relations to
sources for which only the photometric param-
eters have been measured.

Such approach, however, is constrained by the
availability of a reliable (in terms of complete-
ness and efficiency) sample of candidate quasars,
and the accuracy with which it is possible to ob-
tain an estimate of their distance. As it has been
shown in several papers (cf. [9], [11]), the first
task has already been successfully completed but
the second step still poses few problems.

In what follows we shortly outline a new
method based on Neural Networks which, by
making use of the S.Co.P.E. computing in-
frastructure, offers to the Virtual Observatory
(VObs) community the possibility to derive pho-
tometric redshifts for both galaxies and quasars,
provided that a large enough spectroscopic base
of knowledge on which to train the algorithms
is available. The application of machine-learning
techniques for the evaluation of photometric red-
shifts of galaxies has been widely explored in the
literature (cf. [13] and references therein) but the
problems posed by quasars are very different. In
the case of these type of extragalactic sources,
in fact, the base of knowledge (BoK) is char-
acterized by a high degree of sparseness in the
parameter space since quasars are observed in
a very large interval of redshifts (from ~ 0.5
to ~ 6) and cover a large region of the photo-
metric space so that the average density of BoK
members can be very low. The application of
this method to the catalogue of candidate quasars
produced by [11] will lead to the evaluation of
the luminosity function of candidate quasars in
the optical magnitudes of the SDSS ([14], in

prep.).

II. THE METHOD

NE possible approach to the estimation
of the photometric redshifts is based on
supervised machine learning algorithms such as
the neural networks [12], trained on a subsample
of the photometric data set for which spectro-
scopic redshifts are available (the BoK). The
method is then capable of producing accurate es-
timates of the photometric redshifts for sources
found in the same regions of the photometric
parameter space spanned by the members of the
BoK.
The photometric redshift estimation can be
regarded as a regression problem: we seek out
a functional mapping

fic€C—zphot €2

from the parameter space C of the source’s
colours to the target space Z of the redshifts.

A. The Multi-Layer Perceptron

To solve regression problems, the Multi-Layer
Perceptron (MLP) is one of the most robust
and reliable non-deterministic, machine learning
techniques: i) it is a universal function approxi-
mator and does not require any assumptions on
f; i) it has a good response when dealing with
noisy data and, iii) it has remarkable generaliza-
tion properties. In a nutshell, the problem is the
following: we need to train an MLP network to
learn the mapping function f.

As for every supervised machine learning al-
gorithm, it requires the BoK to be split into
different subsets:

e Training Set. 60% of the objects will be
used to provide the network with examples
to induce the mapping function form;

o Validation set. We save 20% of the data to
avoid overfitting: in principle (and in the
absence of degeneracies), a neural network
could approximate a function with arbitrary
precision given a sufficient number of hid-
den nodes. We stop the training phase when
the error on the validation set is minimum.

o Test set. The remaining objects (20%) are
eventually used to test the overall perfor-
mance of the network.
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Fig. 1. Multilayer Perceptrons in ensemble

In the specific case of quasar redshifts, the
regression problem suffers from the intrinsic de-
ficiency of the data due to the noise induced by
the degeneracies. So, it is preferable to train an
MLP ensemble, where each network is trained
(and optimized) on a specific partition of the
parameter space. We wish to recall that MLP
training is an NP-hard optimization problem,
so it can be computationally expensive, with a
computational cost that grows linearly with the
number of input patterns and the dimensionality
of the features space.

B. Partitioning The Parameter Space

Clustering is an unsupervised data mining
method for organizing objects into groups ac-
cording to a given definition of distance. We
can also look at this data partitioning method,
from a geometrical standpoint, as providing a
way to divide the parameter space into different
regions according to a given criterion. It has
to be stressed that, as for all the unsupervised
methods, there is not a unique criterion to decide
whether a specific partition is better than an-
other; neither we know the best number of clus-
ters to partition the parameter space in. Again,
we can exploit our Base of Knowledge to set a
feedback criterion based on the final regression
results to infer the best number of clusters.

Fig. 2.
means

Clustering of a multidimensional dataset with k-

k-means is one of the simplest, yet robust,
clustering algorithms: given the number of clus-
ters (k) and using an euclidean distance, k-
means finds the k cluster centroids aggregating
inputs with similar properties. When splitting the
dataset into clusters we decimate the patterns the
neural networks will be trained on. This could
not be much of a problem when the parameter
space is densely covered by the patterns and
there is a large number of training objects. How-
ever, when dealing with QSO catalogues, the
sparseness of the data does not allow to ignore
the effects of this decimation on the training
process, and it is necessary to find a different
training strategy. This can be done by taking
redundant, overlapping clusters so to introduce
a coupling in the way network are trained. This
coupling can be exploited with the ensemble ap-
proach itself, as it will be shown in the following
sections.

To produce such redundant clustering we
made use of a fuzzy variant of the k-means
clustering algorithm: each point in the parameter
space belongs to each cluster with a non-zero
membership probability; we then set an arbitrary
threshold 7T, so that a cluster actually contains
only points with a membership larger that 7.
With an iterative procedure the fuzzy k-means
algorithm is run several times with a variable
number of clusters between a minimum and a
maximum value. The optimal number of clusters
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N is defined by the value for which the overall
regression error is minimized.

C. Neural Networks ensemble

Given N different clusters, each cluster repre-
sents the BoK for a different MLP network, and
these BoKs share a certain variable number of
sources, with the effect of introducing a coupling
in the training of the different networks. In other
words, each of the N networks is an expert
for the sub-domain of the parameter space it
has been trained on, and these sub-domains are
overlapping. Without the ensemble approach, in
order to estimate the photometric redshift of a
generic point (source) ¢ € C, we should assign
the point to one of the & clusters in the first place,
and then run the correspondent MLP network.
Alternatively, in our method, each input pattern
c is presented to all the MLPs, allowing them
all to provide their “opinion”, and then these
opinions (i.e. different guesses of the photomet-
ric redshift) are combined to provide our best
estimation. According to the way we determined
the clusters, the outputs of the single networks
will be coupled and different networks will have
a different reliability on different regions of the
parameter space. The combination is then per-
formed by means of a gating MLP network that
learns how to combine the predictions coming
from the first layer networks.

We measure the performance of the method
by calculating the Mean Square Error over the
test set. Each different clustering scheme will
yield to a different MSE value. We define the
best number of clusters N as the number that
yields to the minimum value of the MSE error
over the test set.

D. The method as a whole

The workflow we have briefly depicted so far,
involves several optimization problems. Given
the smallest and largest number of clusters we
want to probe, N,,, and Ny, for all k£ between
N,, and N, we have to:

o perform a k-means clustering to find the &

centroids;

« train % different MLP networks.

Number of different clusterings: N = Nmax - Nmin
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Fig. 3. A flow chart of the whole method.

The number of first layer MLPs to train is

Ny
Nnet = Zk
k=N,
. NM(NM+1) Nm(Nm—].)
2 2

If Ny = Ny — Ny, + 1, the total number of
optimization problems is N, = Ny + 2N¢iy,,
since we have to take into account the gating
networks and the clusterings. For N,,, = 2 and
Ny = 10, we have 72 optimization problems.
However, since the k-means’s time complexity is
linear in all the relevant factors (iterations, space
dimensionality, number of clusters, number of
points), we can neglect the computational cost
of the clustering task and consider just the 63
MLP training tasks, i.e. 63 NP-hard optimization
problems. All these tasks are obviously indepen-
dent, so they can be launched in parallel on the
computing GRID.

E. The data

We performed a set of experiments aimed
at the estimation of photometric redshifts for
quasars candidates extracted from the optical
parameter space of SDSS [15] stellar sources
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Fig. 4. zppot VS zspec scatter plot: o = 0.23. The dataset
is a catalogue of optical candidate quasars extracted from the
SDSS. See text for details.

defined by the colours (u—g,g —r, 7 —i,i— 2).
These candidates were obtained via an original
method based on unsupervised clustering (cf.
[11]) which has yielded a catalogue of QSO can-
didates in the SDSS (cf. the webpage at voneu-
ral.na.infn.it/gso.html). The colours of the can-
didate quasars were obtained using the psfgMag
magnitudes retrieved from the PhotoObj All ta-
ble of the SDSS DR7 database, after culling the
dataset excluding all sources with missing mag-
nitudes or NaN. As BoK, we used the spectro-
scopic redshifts obtained from the SDSS spectra
for a subsample of photometric candidates down
to a limiting magnitude g 17.7. In order to obtain
a clean sample of confirmed quasars and to avoid
the introduction of biases in the training pro-
cess of the neural networks, only spectroscopic
redshifts with confidence zConf > 0.90 were
included.

F. A preliminary result

As first scientific application, we have
obtained photometric redshifts for a sample of
optical candidate quasars extracted from the
SDSS, obtaining the accuracy (measured as the
robust standard deviation of the Zphot — Zspec
variable for the quasars of the test set) o = 0.23,
which is better than the accuracies of most of the
methods found in the literature (e.g. [9], [10]).

III. THE METHOD AS A VOBS WEB
APPLICATION

HE VObs aims at providing the world as-

tronomical community with a comprehen-
sive, consistent and interoperable infrastructure
for sharing and federating the massive amounts
of astronomical data observed or simulated by
astronomers worldwide. By means of the VObs
it has become possible to access a multidi-
mensional parameter space and to retrieve the
most complete Base of Knowledge available.
For photometric redshifts this means that we
can build rich multiwavelength BoKs signifi-
cantly improving our prediction accuracy, at the
price of increased computational cost. Super-
vised methods need to be trained on a well
defined BoK, and their predictions are reliable as
far as the input patterns fall in the same regions
of the BoK they have been trained on. Photomet-
ric redshift estimation can obviously improve as
new colours are added to the feature space, but
in order to exploit the information carried by
this extension of the parameter space, specific
networks need to be trained on the new param-
eter space in the first place. This is the main
reason why, since its start, the method presented
above was conceived as a Virtual Observatory
(VObs) tool to be offered to the community as
a web application through the DaME/VOneural
platform. DAME (Data Mining & Exploration)
is described elsewhere in this volume [17]. In its
final version, our application will:

« ask the user for a catalogue of extragalactic
sources, defined by their names or their sky
coordinates;

« for each source, gather all the relevant in-
formation within the VObs;

o dynamically call the properly trained mod-
els;

« if the spectroscopic redshift is available for
a source, retrieve it;

o output the original catalogue with some
columns added: the photometric redshift,
the spectroscopic (if any) redshift and the
respective uncertainties;

 optionally, retrieve from the VObs some
general information about the source, and
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display it to the user.

A prototype of this web application is already
served along with the DAME/VONeural front
end at the address http://dame.na.infn.it

IV. CONCLUSIONS

UR method for photometric redshift es-

timation of quasars was designed to im-
prove upon the accuracy of available methods.
The key role is played by the way we handle
the intrinsic deficiency of the base of knowledge:
for quasars, the BoK can be very sparse, and
degeneracies may likely be introduced by the
spectroscopic features shifting off the photomet-
ric system filters used for the observations. To
overcome this deficiency we apply, for the first
time in astronomy, fuzzy clustering techniques
to the original catalogue, in order to implement
redundant training sets. We train an ensemble
of artificial neural networks on these subsets,
so that the networks become expert at specific
overlapping regions of the feature space. In-
put patterns are then presented to all the ex-
perts and a gating neural network is trained on
their outputs in order to combine them. The
subsets are determined by the fuzzy k-means
clustering algorithm. This method, already pub-
licly available as a web application at the ad-
dress http://dame.na.infn.it, exploits the compu-
tational capabilities of the S.Co.P.E. computing
GRID and is fully compliant with the Virtual
Observatory standards and infrastructure.
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