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ABSTRACT

Nowadays, many scientific areas share the samal bempiirements of being able to deal with massi distributed
datasets while, when possible, being integratell satvices and applications. In order to solvegttoaving gap between
the incremental generation of data and our undwatstg of it, it is required to know how to accesstrieve, analyze,
mine and integrate data from disparate sources.dDtiee fundamental aspects of any new generatiatata mining
software tool or package which really wants to lmeea service for the community is the possibilayuse it within
complex workflows which each user can fine tun@ider to match the specific demands of his sciengibal. These
workflows need often to access different resoufdasa, providers, computing facilities and packagesl require a
strict interoperability on (at least) the clientlesi The project DAME (DAta Mining & Exploration) iaes from these
requirements by providing a distributed WEB-basedadmining infrastructure specialized on MassiveaD3ets
exploration with Soft Computing methods. Originallgsigned to deal with astrophysical use cases,enfitet scientific
application examples have demonstrated its effectdss, the DAME Suite results as a multi-discipjinplatform-
independent tool perfectly compliant with modern XXKnowledge Discovery in Databases) requirememntd a
Information & Communication Technology trends.
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1. INTRODUCTION

Modern Technology in ICT (Information & Communiaati Technology) allows to capture and store huge
quantities of data. Finding and summarizing thedsg patterns and outliers in these data setsesobthe

big challenges of the information age. There hasnbenportant progress in data mining and machine
learning in the last decade. Machine learning, datang, or more generally KDD (Knowledge Discovémny
Databases) discipline is a burgeoning new techrydloigmining knowledge from data, a methodologyt tha
lot of heterogeneous communities are starting ke &eriously. Strictly speaking KDD is about algjoms

for inferring knowledge from data and ways of vatidg it. So far, the main challenge is application
Wherever there is data, information can be gleanaoh it. Whenever there is too much data or, more
generally, a representation in more than 3 dimess{timit to infer it by human brain), the mechanisf
learning will have to be automatic. When a datéséto large for a particular algorithm to be apglithere
are basically three ways to make learning feasibe first one is trivial: instead of applying teeheme to
the full dataset, use just a small subset of abkldata for training. Obviously, in this case imiation is
easy to be lost and the loss is negligible in teofsorrelation discovery between data. The secorthod
consists of parallelization techniques. But thebpgm is to be able to derive a parallelized versibrthe
learning algorithm. Sometimes it results feasihle tb the intrinsic natural essence of the learnitg (such

as genetic algorithms). However, parallelizatioromdy a partial remedy because with a fixed nunder
available CPUs, the algorithm's asymptotic time plexity cannot be improved. Background knowledge
(the third method) can make it possible to redhesamount of data that needs to be processeddariing
rule. In some cases most of the attributes in & lilagaset might turn out to be irrelevant when gemknd
knowledge is taken into account. But in many exion cases, especially related to data miningrasgai
data analysis problems, the background knowledgwlgi does not exists, or could infer a sort of vgon
biased knowledge in the discovery process. In shenario DAME (Data Mining & Exploration) project,
starting from astrophysics requirements domain,ihesstigated the Massive Data Sets (MDS) explorati
by producing a taxonomy of data mining applicati¢imsreinafter called functionalities) and collectedet

of machine learning algorithms (hereinafter calleddels). This association functionality-model reygrets

what we defined as simply "use case", easily caméigle by the user through specific tutorials. dw llevel,



any experiment launched on the DAME framework, ety configurable through dynamical interactive
web pages, is treated in a standard way, makingpledety transparent to the user the specific compgut
infrastructure used and specific data format giasninput. As described in what follows, the ressia
distributed data mining infrastructure, perfectbalable in terms of data dimension and computinggro
requirements, originally tested and successfulljdated on astrophysical science cases, able tfonoer
supervised and unsupervised learning and reveaingulti-disciplinary data exploration capabilityn |
practice, a specific software module of the Suitdled DRiver Management System (DRMS), that isia s
system of the DRIVER (DR) component has been impleed to delegate at runtime the choice on which
computing infrastructure should be launched theedrment. Currently the choice is between GRID andt
alone multi-thread platform, that could be replacésb by a CLOUD infrastructure, (but the DRMS is
engineered in an easy expandable way, so it iswualder further investigation the deployment of Suite
under a multi-core platform, based on GPU+CUDA catimg technique). The mechanism is simple, being
in terms of a threshold-based evaluation of thetinlataset dimensions and the status of GRID jobduder

at execution startup time. This could reduce bodcation time on a single experiment and the erjtibe

execution scheduling.

2. MODERN E-SCIENCE REQUIREMENTS

E-science communities recently started to faced#dege of data produced by new generation of séient
instruments and by numerical simulations (widelgdiso model the physical processes and compare them
with measured ones). Data is commonly organizedsérentific repositories. Data providers have
implemented Web access to their repositories, atpl Imks between them. Thidata network which
consists of huge volumes of highly distributed, ehejeneous data, opened up many new research
possibilities and greatly improved the efficiendydwing science. But it also posed new problemshen
cross-correlation capabilities and mining techngjoe these MDS to improve scientific results. Thesin
important advance we expect is a dramatic neetieokase in using distributed e-Infrastructurestiere-
science communities. We pursue a scenario whems ggedown at their desks and, through a few mouse

clicks, select and activate the most suitagientific gatewayor their specific applications or gain access to



detailed documentation or tutorials. We cstientific gatewayan e-Infrastructure which is able to offer
remote access and navigation on distributed datasieries together with web services and appticeti
able to explore, analyze and mine data. It doeeqtire any software installation or execution gerdocal
PC, it permits asynchronous connection and launtcholos and embeds to the user any computing
infrastructure configuration or management.

In this way the scientific communities will expatideir use of the e-Infrastructure and benefit fram
fundamental tool to undertake research, develo@alations, and increase their scientific proditstiand

the quality of research outputs. Only if this sa@mhecomes reality, the barrier currently placetineen the

community of users and technology will disappear.
2.1 The case of Astrophysics

From the scientific point of view, the DAME projeatrises from the astrophysical domain, where the
understanding of the universe beyond the Solare8yst based on just a few information carriers:itphsin
several wavelengths, cosmic rays, neutrinos anditgtenal waves. Each of these carriers has it
peculiarities and weaknesses from the scientifiotpaf view: they sample different energy rangesjiee
different kinds and levels of interference durifgit cosmic journey (e.g. photons are absorbedewhil
charged Cosmic Rays (CRs) are deflected by magfietds), sample different physical phenomena (e.g.
thermal, non thermal and stimulated emission meshas), and require very different technologiestfeair
detection. So far, the international communitydsemodern infrastructures for the exploitation le# ever
increasing amount of data (of the order of Petaggter) produced by the new generation of telescapes
space borne instruments, as well as by numericalilations of exploding complexity. Extending these

requirements to other application fields, main gifdDAME project can be summarized in two items:

* The need of a “federation” of experimental data,dmlecting them through several worldwide
archives and by defining a series of standard#hfeir formats and access protocols;
« The implementation of reliable computing instrunsefur data exploration, mining and knowledge

extraction, user-friendly, scalable and as mucpaasible asynchronous;



These topics require powerful, computationally ritistted and adaptive tools able to explore, exteaut

correlate knowledge from multivariate massive datam a multi-dimensional parameter spadg, 1.
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point (region) in a subset of RN,

Fig. 1 - The data multi-dimensional parameter spaiceAstrophysics problems

The latter results as a typical data mining regquént, dealing with many scientific, social and tedogical
environments. Concerning the specific astrophysaspects, the problem, in fact, can be analyticall
expressed as follows. Any observed (or simulatedyr defines a point (region) in a subset Bf &ich as:
R.A., DEC, time, wavelength, experimental setup. patial and/or spectral resolution, limiting mitégde,

brightness, etc.), fluxes, polarization, specteaponse of the instrument and PSF;

Every time a new technology enlarges the paransgiece or allows a better sampling of it, new disti®s
are bound to take place. So far, the scientifidataiion of a multi-band (D bands), multi-epoch €idochs)
universe implies to search for patterns and trexrdeng N points in a DxK dimensional parameter space
where N > 18, D >> 100, K > 10. The problem also requires atiulisciplinary approach, covering aspects
belonging to Astronomy, Physics, Biology, InforneetiTechnology, Artificial Intelligence, Engineegiand
Statistics environments. In the last decade, throlomy & Astrophysics communities participatedain
number of initiatives related to the use and degmalent of e-Infrastructures for science and reseéedh

EGEE [7], EuroVO [8], grid.IT [9]), giving astronars the possibility to develop well established and



successful VRC (Virtual Research Communities). Apgrt cluster dedicated to A&A has been set up and
funded in the framework of the EGEE-IIl project.r@&ys of the requirements of the A&A community
concerning data management, job management, atribdied tools and more general services has been
done in the framework of EGEE-Il and EGEE-Ill prdfe Requirements focus on the need to integrate
astronomical databases in a computing grid andten@@per science gateways to underpin the usheof t
infrastructure and to bridge heterogeneous e-ltifretires (i.e. EGEE and EuroVO). Moreover, astrers
envisage some advanced functionalities in the @iseew computing architectures (such as shared mgmor
systems or GPU computing) and therefore the abilitygridify applications that require to run many
independent tasks of parallel jobs. This dynamicpss demonstrates the effectiveness of the twic bas

requirements mentioned above.

As for data, the concept of “distributed archivésalready familiar to the average astrophysidisie leap
forward in this case is to be able to organizedhi repositories to allow efficient, transparam aniform
access: these are the basic goals of the VO or {@Hhsial Observatory). In more than a sense, t®i¥ an
extension of the classical Computational Gridijt# perfectly the Data Grid concept, being basedtorage
and processing systems, and metadata and commangatanagement services. The VO is a paradigm to
use multiple archives of astronomical data in derowperating, integrated and logically centralized/, so to

"

be able to “observe a virtual sky™ by position,wekength and time. Not only data actually obseraes
included in this concept: theoretical and diagmostin be included as well. VO represents a new tfpe

scientific organization for the era of informatiabundance:

e ltis inherentlydistributed and web-centric;

e Itis fundamentally based orrapidly developing technology

» It transcends the traditional boundariestween different wavelength regimes, agency dospai
» It has arunusually broad range of constitueratisd interfaces;

* ltis inherentlymultidisciplinary,

The International VO (cf. the IVO Alliance or IVOA10]) has opened a new frontier to astronomy .alet,f

by making available at the click of a mouse an enpdented wealth of data and by implementing common



standards and procedures, the VObs allow a newragioe of scientists to tackle complex problems ahhi
were almost unthinkable only a decade ago [1].ck&tmers may now access a “virtual” parameter spéce
increasing complexity (hundreds or thousands featumeasured per object) and size (billions of dbjec
However, the link between data mining applicatiansl the VObs is currently defined only partiallys A
matter of fact, IVOA has concentrated its standaatitbn efforts up to now mainly on data, and théniteon

of mechanisms to access general purpose interdpemails for “server side” massive data sets mdatmn

is still a matter of discussion within IVOA. Beliirthis consideration there is the crucial requineirte

harmonize all recent efforts spent in the field¥6fbs, GRID and HPC computing, and data mining.

3. DATA MINING AND THE FOURTH PARADIGM OF SCIENCE

X-informatics (such as Bio-informatics, Geo-infortica and Astro-informatics), is growingly being
recognized as the fourth leg of scientific reseafter experiment, theory and simulations [2].rls@s from
the pressing need to acquire the multi-disciplinexpertise which is needed to deal with the ongdhingst
of data complexity and to perform data mining axgloration on MDS. The crucial role played by such
tasks in astrophysics research has been recemtififectkby the constitution, within the IVOA, of dnterest
Group on Knowledge Discovery in Data Bases (KDD-i@jich is seen as the main interface between the
IVOA technical infrastructure and the VO enableiisce. In this context the DAME project intends:

« To provide the VO with an extensible, integratediemnment for data mining and exploration;

e Support of the VO standards and formats, espediallgpplication interop (SAMP);

* To abstract the application deployment and exeouso to provide the VO with a general purpose

computing platform taking advantage of the modentnologies (e.g. Grid, Cloud, etc...).

By following the fourth paradigm of science, itiew emerging world-wide (cf. the US — AVO community
& the recent meeting on Astro-informatics at thé&th1AAS) the need for all components (both hardware
and software) of the Astro-informatics infrastruettio be integrated or, at least, made fully interable. In
other words, the various infrastructure componédéda, computational resources and paradigms, amdtw
environments, applications) should interact seashfesxchanging information, and be based on a gtron

underlying network component.



4. THE DAME APPROACH TO DISTRIBUTED DATA MINING

The DAME project aims at creating a distributechidstructure to guarantee integrated and asynohbion
access to data collected by very different expantsiand scientific communities in order to correldtem
and improve their scientific usability. The projemtnsists of a data mining framework with powerful
software instruments capable to work on MDS in striiuted computing environment. The VObs have
defined a set of standards to allow interoperabdiinong different archives and databases in themstsics
domain, and keeps them updated through the actofitdedicated working groups. So far, most of the
implementation effort for the VO has concerned sterage, standardization and interoperability ef data
together with the computational infrastructuresr Project extends this fundamental target by iraégg it

in an infrastructure, joining service-oriented s@fte and resource-oriented hardware paradigmsjdimg
the implementation of advanced tools for KDD pugmsThe DAME design takes also into account the fac
that the average scientists cannot and/or doew/awt to become an expert also in Computer Scienée o
the fields of algorithms and ICT. In most casesrthes. scientist (our end user) already possdsseswn
algorithms for data processing and analysis andrhpiemented private routines/pipelines to solvecsic
problems. These tools, however, often are not bl distributed computing environments or are to
difficult to be migrated on a GRID infrastructul2AME also aims at providing a user friendly sciéaoti
gateway to easy the access, exploration, processidgunderstanding of the massive data sets federat
under standards according VObs rules. We wishhiphasize that standardization needs to be extetoded
data analysis and mining methods and to algoritbenelopment. The natural computing environment for
such MDS processing is a distributed infrastruc{@RID/CLOUD), but again, we need to define staddar

in the development of higher level interfaces, ridew to:

e isolate end user from technical details of VO amIICLOUD use and configuration;

* make it easier to combine existing services anduregs into experiments;

Data Mining is usually conceived as an applicatidaterministic/stochastic algorithm) to extract mawn
information from noisy data. This is basically tioet in some way it is too much reductive with espto

the wide range covered by mining concept domainsteMprecisely, in DAME, data mining is intended as



techniques of exploration on data, based on thebawtion between parameter space filtering, machine
learning, soft computing techniques associated tonational domain. The functional domain term esis
from the conceptual taxonomy of research modesicgipé on data. Dimensional reduction, classifaati
regression, prediction, clustering, filtering amgample of functionalities belonging to the data imin
conceptual domain, in which the various methodsdgi® and algorithms) can be applied to explore data

under a particular aspect, connected to the ageddianctionality scope.
4.1 Design Architecture

DAME is based on five main components: Front En&)(F-ramework (FW), Registry and Data Base
(REDB), Driver (DR) and Data Mining Models (DMM).

The FW is the core of the Suite. It handles all samication flow from/to FE (i.e. the end user) dhe rest

of the components, in order to register the ugeshbw user working session information, to configand
execute all user experiments, to report output statls/log information about the applications ragnor
already finished. One of the most critical factofshe FW component is the interaction of a newigated
experiment with the GRID environment. The FW netedsreate and configure the plug-in (hereinaftdieda
DMPIugin) associated to the experiment. After tHdugin is configured the DR component needs to run
the experiment by calling the run method of thegpglu When executed on the GRID, the process needs
migrate on a Worker Node (WN). To implement thiggration we've chosen to serialize the DMPlugin in a
file. Serialization is a process of converting djject into a sequence of bits so that it can beedton a
storage medium. Our tests on the GRID environmmdicates that this solution works fine and thatjtie

file needed to manage the whole process is vergleim

The component FE includes the main GUI (GraphicaérUinterface) of the Suite and it is based on
dynamical WEB pages, rendered by the Google WelkkitdGWT), able to interface the end users whk t
applications, models and facilities to launch stifienexperiments. The interface foresees an auitation
procedure which redirects the user to a persorsdi@® environment, collecting uploaded data, check
experiment status and driven procedures to cordigurd execute new scientific experiments, using all

available data mining algorithms and tools. From &mgineering point of view, the FE is organized by



means of a bidirectional information exchange, digto XML files, with the component FW, suite engine

component, as showed fig. 2.

1. Request

=

To/from Suite
Components

e

To/from
Suite GUI

2. Reply

Fig. 2 —communication interface schema between FidaFW

The component DR is the package responsible opliysical implementation of the HW resources handled
by other components at a virtual level. It perntiits abstraction of the real platform (HW environinand
related operative system calls) to the rest ofeSsiiftware components, including also I/O interféfde
loading/storing), user data intermediate formatimgl conversions (ASCII, CSV, FITS, VO-TABLE), job

scheduler, memory management and process redindEfig 3).

I Framework I

Data
Processing |

Driver
Management
System

Execution Storage

GRID Stand Alone

\ Infrastructure / \ Machine /

Fig.3 - The DRIVER component as interface with contpg infrastructure



More in detail, a specific sub-system of the DR ponent, called DRiver Management System (DRMS),
has been implemented to delegate at runtime thieelod the computing infrastructure should be deléd¢o

launch the experiment.

The component REDB is the base of knowledge remgysior the Suite. It is a registry in the sensatth
contains all information related to user registmatiand accounts, his working sessions and related

experiments.

Admin
Interface

s 2

Fig. 4 — REDB architecture

It is also a Database containing information aleqteriment input/output data and all temporargffidata

coming from user jobs and applicatiorisig( 4).

The component DMM is the package implementing atadorocessing models and algorithms available in
the Suite. They are referred to supervised/unsigedvmodels, coming from Soft Computing, Self-adept
Statistical and Deterministic computing environnserit is structured by means of a package of libsar

(Java API) referred to the following items:

« Data mining models libraries (Multi Layer PerceptroSupport Vector Machine, Genetic
Algorithms, Self Organizing Maps, etc...);

* Visualization tools;



Statistical tools;

Custom libraries required

by the user;

List of functionalities (Classification, Regressid@tiustering, etc...);

The following scheme shows the component diagratheéntire suiteHig. 5).
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Servlets based on XML /'\\ J OMPlugin
protocol AN =7 M Functionalities
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DRIVER T DATABASE
pussvsTe | Mo duslemion | st
HARDWARE I/F Duta?armat R E EXPERIMENT
Library ! INFORMATION
Stand USER USER USER
Alone GRID CLoup INFO SESSIONS | | EXPERIMENTS

Fig. 5 - DAME Functional Infrastructure

4.2 Distributed Environment

As underlined in the previous sections processinguge quantities of data is a typical requiremeine-
science communities. The amount of computationgdedeo process the data is impressive, but often
“embarrassingly parallel” since based on local afmas, with a coarse-grained level of parallelismsuch
cases, the “memory footprint” of the applicatiofiswas to subdivide data in chunks, so as to fit B&M
available on the individual CPUs and to have eakl @ perform a single processing unit. In mostesa
“distributed supercomputers”, i.e. a local clustdrPCs such as a Beowulf machine, or a set of HPC
computers distributed over the network, can beféettive solution to the problem. In this case, GRID

paradigm can be considered to be an importantfete@rd in the provision of the computing power deg

to tackle the new challenges.
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Fig. 6 - The concept of distributed infrastructuiea DAME

The main concept of distributed data mining appiices embedded in the DAME package Suite is based o
three issuesH(g. 6):

e Virtual organization of data: this is the extensadralready remarked basic feature of VObs;

e Hardware resource-oriented: this is obtained bygusbomputing infrastructures, like GRID, whose
solutions enable parallel processing of tasks,quglie capacity. The paradigm in this case is to
obtain large numbers of work requests running farsperiods of time;

« Software service-oriented: this is the base ofdgpCLOUD computing paradigm. The data mining
applications implemented runs on top of virtual hiaes, seen at the user level as services

(specifically web services), standardized in teaihndata management and working flow;

Our scientific community needs not only "traditith@omputations but also the use of complex data
operations that require on-line access to databasésly mediated through a set of domain specifedw
services (e.g. VObs), and the use of HPC resourcesnin-silico (numerical) experiments. The DAME

Suite is deployed on an multi-environment platfongiuding both CLOUD and GRID solutionBif. 7).
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Fig. 7 - The DAME Suite deployed on the GRID arcédture

In particular, concerning the GRID side, the Seitploits the S.Co.P.E. GRID infrastructure. The&RCE.
project [3], aimed at the construction and actvatf a Data Center which is now perfectly integdain the
national and international GRID initiatives, ho380 eight-core blade servers and 220 Terabytéoodige.
The acronym stands for “Cooperative System for Midtiplinary Scientific Computations”, that is a
collaborative system for scientific applicationsni@ny areas of research. For its generality the [BABdite

is used also for applications outside of astron@sugh as, chemistry, bioinformatics and socialrsms).
4.3 Soft Computing Applications

The KDD scheme adopted in the DAME package is base&oft Computing methods, belonging to the
typical dichotomy (supervised/unsupervised) of niaeHearning methods. First type makes use of prior
knowledge to group samples into different classéeghe second type, instead, null or very littlgrori
knowledge is required and the patterns are classifsing only their statistical properties and semalarity
measure which can be quantified through a matheaiatiustering objective function, based on a prlype
selected distance measure. In the first releagePMM implements the models as listed in the follg

table.



MODEL CATEGORY FUNCTIONALITY

MLP + Back Propagation learning rule, [11] Supesdis Classification, Regression

MLP with GA learning rule, [11], [16] Supervised &kification, Regression
SVM, [14] Supervised Classification, Regression
SOM, [15] Unsupervised| Clustering

Principal Probabilistic Surfaces (PPS), [13] Unsu@ed | Dimensional reduction, pre-clustering

Negative Entropy Clustering (NEC), [12] Unsuperdise Clustering

Depending on the specific experiment, the use wpfcdthe models listed above can be executed i or
less degree of parallelization. All the models isgjlgome parameters that cannot be defined a pciaunising
the necessity of iterated experiment sessionsderao find the best tuning. Then not all the med=n be
developed under the Message Passing Interface (MP&digm. But the possibility to execute more jabs

once (specific GRID case) intrinsically exploite ttmulti-processor architecture.

5. FIRST SCIENTIFIC AND TECHNOLOGICAL RESULTS

During the design and development phases of thiegresome prototypes have been implemented inrorde
to verify the project issues and to validate tHected data mining models from the scientific pahtiew.

In this context, a Java-based plugin wizard fotamsexperiment (DMPlugin) setup has been desidoed
extend DAME Suite features with user own algorithtmsbe applied to scientific cases by encapsulating

them inside the Suitd~{(g. 8).
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Fig. 8 - The DMPIlugin Java application to extend figtionalities of DAME Suite

This facility, [17], extends the canonical use lo¢ tSuite: a simple user can upload and build hiaséss,
configure the data mining models available, exedifferent experiments in service mode, load greghi

views of partial/final results.

Moreover, a prototype of the framework Suite hasrbéevelopedHig. 9). The prototype is a Web
Application implementing minimal DAME features aretjuirements, developed in parallel with the prbjec
advancement in order to perform a scientific val@aof models and algorithms foreseen in the n&iite
and to verify all basic project features designethted to the scientific pipeline workflow. It hagen

implemented as a Python web application and isiglytdccessible, [18].
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Fig. 9 - The DAME Prototype page example

The prototype implements the basic user interfacetfonalities: a virtual file store for each regi®d user

is physically allocated on the machine that sethesweb application. Users can upload their fikkedgete
them, visualize them: the system tries to recogthieefile type and shows images or text contexyua@lhy
astronomical data analysis and/or data mining éxpstt to be executed on the prototype, can be agdn

as a data processing pipeline, in which the usthefprototype needs to be integrated with pre avst p
processing tools, available between Virtual ObseryaWeb Services. The prototype has been tested on

three different science cases which make use of MDS

e Photometric redshifts for the SDSS galaxies, [19]: It makes use of a nested chain of MLP (Multi
Layer Perceptron) and allowed to derive the photameedshifts for ca. 30 million SDSS galaxies
with an accuracy of 0.02 in redshift. This resuftieh has appeared in the Astrophysical Journal [4],
was also crucial for a further analysis of low rplitity groups of galaxies (Shakhbazian) in the
SDSS sample;

e Search for candidate quasarsin the SDSS: The work was performed using the PPS (Probabilistic
Principal Surfaces) module applied to the SDSS3D8S+UKIDS data. It consisted in the search
for candidate quasars in absence of a priori caimstrand in a high dimensionality photometric

parameter space, [5];



e AGN classification in the SDSS [23]: Using the GRID-S.Co.P.E. to execute 110 jobs D& WN,
the SVM model is employed to produce a classifiratof different types of AGN using the
photometric data from the SDSS and the base ofvlauge provided by the SDSS spectroscopic

subsamples. A paper on the results is in preparatio

Concerning the results achieved and remarking vefhaady mentioned in par. 5.3, using the hybrid
architecture, it is possible to execute simultaseexperiments that gathered all together, bringhbst
results. Even if the single job is not parallelize@ obtain a running time improvement by reachheglimit

value of the Amdahl’s law (N):

where if P is the proportion of a program that barmade parallel (i.e. benefit from parallelizajjcand (1 -
P) is the proportion that cannot be parallelizegn@ins serial), then the resulting maximum speethaipcan

be achieved by using N processors is obtained dlath expressed above.

For example, in the case of AGN Classification edpent (cited above), each of the 110 jobs runsafoyut
a week on a single processor. By exploiting the ZgRlhe experiment running time can be reduced tuab

one week instead of more than 2 years (110 weeks).

6. CONCLUSION

Generally speaking, applications for KDD will cormet from computer programs, nor from machine
learning experts, nor from the data itself, bunfrpeople and communities who work with the data ted
problems from which it arises. That is why we haesigned and provided the DAME infrastructure, to
empower those who are not machine learning experpply these techniques to the problems thag¢ amis
daily working life. DAME project comes out as antraphysical data exploration and mining tool,

originating from the very simple consideration thaith data obtained by the new generation of urants,



we have reached the physical limit of observati(sisgle photon counting) at almost all wavelengtlfis.
extended to other scientific or applied researdtidiines, the opportunity to gain new insights tbe
knowledge will depend mainly on the capability ézagnize patterns or trends in the parameter spdageh
are not limited to the 3-D human visualization,nfreery large datasets. In this sense DAME appraach
be easily and widely applied to other scientifmgial, industrial and technological scenarios. Puaject has
recently passed the R&D phase, de facto enteringhén implementation commissioning step and by
performing in parallel the scientific testing wiflrst infrastructure prototype, accessible, aftesiaple
authentication procedure, through the official pobj website address, [20]. First scientific testutes

confirm the goodness of the theoretical approachtachnological strategy.
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