Astroneural 1.0 is available and includes tools for supervised and unsupervised data mining:

- Preprocessing & visualization
- Supervised (MLP, RBF)
- Unsupervised (PPS, NEC+dendrogram, SOM)
- PCA and ICA
- Genetic algorithms
- Visualization of results

http://people.na.infn.it/~longo/
Science is a non negligible part of the work:

- to understand what the r.m.s astronomer needs and to adapt the tool accordingly
- to convince the community that this approach is useful

Hence: Astroneural v 1.0 is being tested on several science cases:

- photometric redshifts for the SDSS dataset
- physical classification of galaxies using photometry (multiband)
- Statistical studies of loose groups in 3-D space
- Star/Galaxy classification on multiepoch survey data (PalomarQuest with Caltech)
- AGN and QSO identification from multiband photometric surveys (in progress)

2. **Visualization, Clustering and Classification of Multidimensional Astronomical Data**, 2005, CAMP 2005

6. Other papers on Astroneural site

Frequency of Astroneural downloads increased by a factor 10 after publication of papers 1 and 3
SDSS-DR4/5 – GG

Training, Validation, Test set

MLP, 1(5), 1(18)

0.01<Z<0.25
MLP, 1(5), 1(23)
Interpolation of systematic errors
σ rob = 0.206

0.25<Z<0.50
MLP, 1(5), 1(24)
Interpolation of systematic errors
σ rob = 0.234

Phot Z for SDSS General Galaxy sample at least 30 experiments (10-12 h/each) training on 350,000 objects 12 features results for 32,000,000 objects 60%, 20%, 20%

99.6 % accuracy
General galaxy sample

\[\sigma = 0.0208 \]
\[\Delta z = -0.0029 \]
Porting of Astroneural as it is, was found to be impossible mainly due to visualization of results and to the fact that software is proprietary.

Simple conversion of MatLab code to C is not optimal due to:
(i) the need to optimize the code
(ii) the (possibly) long computing time no interactivity
(iii) lack of visualization capabilities

Scalability issue: code needs to be entirely re-written (there is not any C/Java DM library capable to deal with \(10^5\) records)

No need to write most of the visualization and pre-analysis tools (TOPCAT does it wonderfully)

Programs must be used in iterative way and each code needs its own visualization tool to become user friendly (some problems do exist)
Visualization and pre-analysis

Topcat

Local data

VO-neural.jar

User Id application local data

VO-neural web service

Appl. 1
Appl. 2
Appl. 3
……

Data in workspace

Message to user

Visualization and analysis of results
• preprocessing, visualization and data selection using TOPCAT

• Supervised (MLP, RBF)

• Unsupervised (PPS, NEC + dendrogram, SOM)

• Genetic algorithms?

• Clustering via K-means

• PCA & ICA
VOneural.MLP

Done: under test as local implementation
VOneural.SOM tool

Partially done: Problems with visualization of some features
Examples of needed visualizations

feature significance maps

U-matrix with labels
Probabilistic Principal Surfaces: probably solved (in part) within TOPCAT
Tricky interactive visualization
To be solved
An universal classifier for the virtual observatory. I. The methods.

Longo Giuseppe1,3,4, Brescia Massimo3,4, D’Abruco Raffaele1,2,
De Filippis Elisabetta1,3, Paolillo Maurizio1,3,4, Staiano Antonino5,
Tagliaferri Roberto6

\textbf{Figure 7.} Gaussian distribution examples. Upper panel: Negentropy = 2.6261 using the G_1 function with $a_1 = 0.1$; Lower panel: Negentropy = 0.005 using the G_1 function with $a_1 = 0.1$

\textbf{Figure 9.} NEC colored dendrogram. PPS 2-dimensional mapping and labeling. MDS 2-dimensional projection and labeling.
No DEMO:

if you wish you can play with Astroneural (tbx) on this computer
The remaining year will be entirely devoted to the following tasks:
Completion of the release 1.0 of the VO-Neural package (plasticized, etc)

ALL data mining tools are of limited use unless the **MISSING DATA** problem is solved

This will include: MLP, PPS, SOM and NEC modules together with all the needed visualization tools. We also plan to include immediately after also the RBF module.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>March 2007</td>
</tr>
<tr>
<td>SOM</td>
<td>June 2007</td>
</tr>
<tr>
<td>PPS</td>
<td>September 2007</td>
</tr>
<tr>
<td>NEC + dendrogram</td>
<td>September 2007</td>
</tr>
<tr>
<td>NexT</td>
<td>December 2007</td>
</tr>
</tbody>
</table>

Several Other Science cases will be completed (all done within the VO):

- 3-D structure of nearby (z<0.25) universe using SDSS data and SOM clustering techniques
- AGN/QSO identification from SDSS and UKIDS surveys (both unsupervised and supervised MLP)
- Star/Galaxy separation with a priori information