An ICT and data mining framework for knowledge discovery in the ViaLactea project

Giuseppe Riccio1, Ugo Becciani2, Massimo Brescia1, Robert Butora3, Stefano Cavuoti1, Alessandro Costa2, Anna Maria Di Giorgio4, Akos Hajnal5, Gabor Hermann5, Peter Kacsuk5, Istvan Marton5, Amata Mercurio1, Sergio Molinari4, Marco Molinaro3, Riccardo Smareglia3, Fabio Vitello2

1 INAF – Astronomical Observatory of Capodimonte, Via Moiariello 16, I-80131 Napoli, Italy
2 INAF – Astronomical Observatory of Catania, Via S. Sofia 78, I-95123 Catania, Italy
3 INAF – Astronomical Observatory of Trieste, Via Tiepolo 11, I-34131 Trieste, Italy
4 INAF – IAPS, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
5 MTA SZTAKI, Kende u. 13-17, Budapest, Hungary
The role of WP5 in the project
The role of WP5 in the project
Overview of the WP5 activities

WP5 main tasks

• **TASK 1:** INAF – Astronomical Observatory of Trieste
 Database and Virtual Observatory Infrastructure.
 This will ensure the *integration and interoperability* of all new data and tools products by enduring their compliance to *VO standards*. The usage and test of VO standards and tools can *increase the scientific productivity* and encourage the development of automatic pipelines to explore existing VO-compatible DB/archives.

• **TASK 2:** INAF – Astronomical Observatory of Capodimonte, Napoli
 Data Mining Systems
 Data Mining System are intelligent integrated systems directly supporting scientific decision making and situation awareness by dynamically integrating, correlating, fusing and analysing extremely large volumes of disparate data resources and streams. All these systems are *based on the machine learning paradigms* (both supervised and unsupervised), enabling the self-adapting, generalization and automation capabilities to explore and mine data.
Overview of the WP5 activities

WP5 main tasks

• TASK 3: INAF – Astronomical Observatory of Catania

3D Visual Analytics Systems

This task will implement a *3D-aided visual analytics environment* allowing the astronomer to easily conduct research activities using methods for multidimensional data and information visualization real-time data interaction to carry out complex tasks for multi-criteria data/metadata queries for *subsample selection and further analysis*, or real-time *control of data fitting to theoretical models*.

• TASK 4: MTA – SZTAKI

Science Gateway

According to the needs of the astrophysics user community the Science Gateway with its features will be deployed. Workflows and portlets are also provided by this task with the *support of the whole collaboration*.
Most of the first period has been spent to find a common language among members...

How astronomers see astroinformaticians

...with doubtful but promising results

How astroinformaticians see astronomers
Overview of the WP5 activities

Desktop Client

Knowledge base DB

Overall system architecture

INAF-OATS

INAF-OACT

INAF-IAPS

INAF-OACN

Science Gateway

Data Mining

Computing Resources

SAIT, INAF OACT - 2015
ViaLactea Team – WP5
VIALACTEA: the Milky Way as a Star Formation Engine

The data flow and management system

VLKB main interface (I/F): IVOA Table Access Protocol (TAP) service

WP2 Task 1
WP5 Task 2 Data Mining
WP5 Task 3 3D Visual
WP2 Task 3
WP3 Task 1
WP3 Task 1/4

http://palantir19.oats.inaf.it:8080/vlkb

SAIT, INAF OACT - 2015
Two science gateways had been set up and operated:

- VIALACTEA Project Science Gateway – v0 in Catania
- VIALACTEA Project Science Gateway – v1 in Rome

Both conform to STARnet alliance (common authentication, resource sharing, etc.)

Connected to PBS clusters of Catania and Rome

VIALACTEA Project Science Gateway – v1 is based on the latest WS-PGRADE/gUSE release (series 3.7)

Improvements of gUSE are continuously integrated

Monitor and test: a new plan will be implemented

Let’s see a video showing some details about the Science Gateway infrastructure
Task 1: Filamentary structure detection

- Production of column density maps of entire galactic plane
- Automated filament extraction workflow for Hi-GAL survey

The filament extraction code was run on the column density maps covering the region between Galactic longitude 290° -- 320°, with different threshold levels equal to 2.5, 3. and 3.5 times the local standard deviation of the minimum eigenvalue (Schisano et al., 2014)

OACN Data Mining goal:

- To refine the edges;
- To extend filament regions.

The right calculation of physical quantities related to filaments strongly depends on their dimensions, so the correct definition of edges is crucial.
Overview of the filament areas of interest

To combine different filament detection methods to improve the global performances.
The method consists in two main phases:

- **Feature Extraction**: a set of features depending by its neighbors is associated to each pixel of the input image
- **Classification**: image pixels are classified as filamentary or background, by using a supervised Machine Learning method, trained by these features

A further phase, **Feature Selection**, finds the most relevant features. By reducing the initial data parameter space, it is possible indeed to improve the execution efficiency of the model, without affecting its performances.
VIALACTEA: the Milky Way as a Star Formation Engine

FilExSeC – pixel feature analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameters</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td>Template</td>
</tr>
<tr>
<td>Haar-like (158)</td>
<td>Black rectangle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black rectangle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Black rectangle</td>
<td></td>
</tr>
<tr>
<td>Haralick (192)</td>
<td>$</td>
<td>\tilde{d}</td>
</tr>
<tr>
<td>Statistical (41)</td>
<td>windows = 3x3 – 5x5 – 7x7 – 9x9</td>
<td>Gradients (vert., horiz., diag.), Mean, Stdev, Skewness, Kurtosis, Entropy, Range</td>
</tr>
<tr>
<td></td>
<td>windows = 1x1</td>
<td>Pixel Value</td>
</tr>
</tbody>
</table>

Features extracted from each pixel and its neighbors

Feature selection:

Haralick type excluded (no information lost and improved computing time)
FilExSeC is able to connect, by means of NFPs, filaments that in the traditional method are tagged as disjointed objects. **By joining filaments as a unique structure**

total mass and mass per length change, inducing a different physics of the filamentary structure.

<table>
<thead>
<tr>
<th>Filament Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected Filaments</td>
<td>668</td>
</tr>
<tr>
<td>Confirmed Filaments</td>
<td>298</td>
</tr>
<tr>
<td>New Filaments</td>
<td>196</td>
</tr>
<tr>
<td>Extended Filaments</td>
<td>169</td>
</tr>
<tr>
<td>Joined Filaments</td>
<td>5</td>
</tr>
</tbody>
</table>

EXAMPLE:
TEST tiles 1+2 of Hi-GAL I217-I224

A further analysis is required to verify the correctness of the reconstruction of interconnections between different filaments, to evaluate the contribution of FilExSeC to the knowledge of the physics of the filaments.
VIALACTEA: the Milky Way as a Star Formation Engine

FilExSeC – Example of Joined Filaments

Connection of 6 filaments identified by IAPS

IAPS total number of pixels: 1852
Pixel added by FilExSeC: 858
New Total number of pixels: 2710
% NFP: +46.33%

IAPS

FilExSeC
VIALACTEA: the Milky Way as a Star Formation Engine

WP2 – task 1 – Band merging

Task 1: Compact Source Extraction and band-merging
- Hi-GAL Source extraction and photometry
- Band-merging with ancillary information (from near-IR to radio)

The source extraction with CuTEx (Molinari et al., 2010a) has been run over the entire Galactic plane.

The -71° < l < 67.5° portion of the HERSHEL/Hi-GAL photometry lists should be band-merged, filtered and complemented with distances and ancillary photometry: MIPSGAL, UKIDSS, WISE, MSX; ATLASGAL, BGPS ...

- Captures and maintains multiple counterpart associations;
- Topological quality flagging;
- Ingested into a VO-like database so that complex queries are possible;
- Interfaced with Visualization tools;
- Massively based on multi-threading parallelization.

A first result from OACN of a band-merged catalogue using a data-mining approach has been implemented for the Herschel bands.
The workflow for compact source analysis

- **CuTEx:** compact source extraction
- **Q-FULLTREE:** band merging
- **Filter Merged:** select unique branches
- **Add physics:**
- **Generate SED View band merged catalogue:**

Future improvements:
- User space for catalogue integration
- Data release solution
- A&A using LDAP and mixed data policy
VIALACTEA: the Milky Way as a Star Formation Engine

Q-FULLTREE processing flow

Project DBMS -> Catalogue query -> Single-band B₁,..., B₉ tables

Sorting in GLON

Longest band table as reference

% splitting, Δ overlap

Multi-thread splitting of all single-band catalogues

Splitting Preparation Generate X₁,...,X₉

Quality Ranking, Quality Fitness, Absolute Quality Fitness

Other methods

SED fitting

Quality flagging

SED model query

CSS list query

Project DBMS

Clean duplications -> IDcss generation -> Multi-thread Splitting

Full band-merged catalogue -> Single band-merged catalogues

Science Gateway

SAIT, INAF OACT - 2015

ViaLactea Team – WP5
VIALACTEA: the Milky Way as a Star Formation Engine

Q-FULLTREE Example

$$CL_{500-350} = 0.91$$
$$CL_{500-250} = 0.87$$
$$CL_{350-250} = 0.89$$

$$\frac{NE}{TNE} = \frac{3}{3} = 1$$

$$MS_1 = 2.67$$

$$MS_2 < MS_1$$

$$MS_2 = 1.79$$

$$CL_{500-350} = 0.91$$
$$CL_{500-250} = 0.87$$
$$CL_{350-250} = 0.89$$

$$\frac{NE}{TNE} = \frac{4}{6} = \frac{2}{3}$$

$$CL_{250-70} = 0.02$$
WP2-T1 Q-FULLTREE infrastructure aspects

VIALACTEA: the Milky Way as a Star Formation Engine

PERFORMANCES
Worst gain in speedup when compared with single-thread FULLTREE: 200x (mostly higher)

5 bands:
on a bi-CPU 1.6GHz, 16 cores:
FULLTREE 27 days → Q-FULLTREE 3.3 hours
On a quad-CPU 2.4GHz, 32 cores:
FULLTREE 23 days → Q-FULLTREE 1.3 hours
On CT cluster (1 CPU 2.4 GHz, 12 cores):
FULLTREE 29 days → Q-FULLTREE 3.15 hours
An evolutionary classification tool for ViaLactea, will catalogue “clumps” in terms of the evolutionary stage and mass regime of the ongoing star formation. There are two components that need to be developed at the foundation of the classification tool:

1. an evolutionary classification toolbox
2. a set of star-forming clumps in known stages of evolution to be used as a training/test-set for machine-learning algorithms...

...and adopt some kind of evolutionary scheme

Data-mining approaches to source classification
FOREIGN (Forming Region Exploring Intelligent Gated Network)

Weak Gated Classification
We know nothing about the sources evolutionary stage;
Identify over-densities in the given parameter space (e.g., built on the evolutionary toolbox, plus any other available evidence);
Data are then grouped into clusters: groups of data entries sharing common but a priori unknown correlations among parameter space features.

Supervised Classification
For a subsample of points, its category/class is well known;
Need order of 10^3 objects to be used as a training set;
Balanced population of classes in the training set.
VIALACTEA: the Milky Way as a Star Formation Engine

WP2-T4 Evolutionary Classification (1st)

Parameter space:
- Luminosity/mass diagram
- IR color distribution
- Mass/radius relationship
- Association with masers
- Association with radio continuum
- Outflow indicators
- YSO IR-color spatial association
- Others...

class partitioning inferred by science experts

supervised classification

ambiguity

SF clumps – source class prediction – Knowledge Base

- Quiescent / pre-stellar
- Proto-stellar
- Hot molecular cores
- Ultra-compact HII regions
- Evolved HII regions

Train set

Validation set

Test set

Fuzzy/cross-entropy
VIALACTEA: the Milky Way as a Star Formation Engine

WP2-T4 Evolutionary Classification (2nd)

Parameter space

- Luminosity/mass diagram
- IR color distribution
- Mass/radius relationship
- Association with masers
- Outflow indicators
- YSO IR-color spatial association
- Others...?

unsupervised clustering

validated by science experts

ambiguity

SF clumps – source class prediction – Knowledge Base

- Quiescent / pre-stellar
- Proto-stellar
- Hot molecular cores
- Ultra-compact HII regions
- Evolved HII regions

Train set

Validation set

Test set

Fuzzy/cross-entropy
Conclusions

The whole project has successfully passed the mid-term official EU commission review.

The initial inertia due to interaction problems between technology and science communities is going to be successfully overcome.

The data and computing infrastructures and visual analytics solutions started to host and integrate the planned scientific workflows, matching the expected capabilities.

The data mining paradigms are demonstrating their expected benefit to help the scientific problem solving automation as well as to manage the foreseen amount and complexity of data.

In other words

The project at mid-term stage (April 2015) is respecting the initial goals, among which the WP5 expectation to release a useful resource for the wide scientific community, which will remain available also after the project closure (October 2016).